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Abstract

In this paper, we introduce T-DEED, a Temporal-Discriminability Enhancer
Encoder-Decoder for Precise Event Spotting (PES) in sports videos. T-DEED
addresses multiple challenges in the task, including the need for discriminabil-
ity among frame representations, high output temporal resolution to maintain
prediction precision, and the necessity to capture information at different tem-
poral scales to handle events with varying dynamics. It tackles these challenges
through its specifically designed architecture, featuring an encoder-decoder for
leveraging multiple temporal scales and achieving high output temporal resolu-
tion, along with temporal modules designed to increase token discriminability.
Leveraging these characteristics, T-DEED achieves state-of-the-art (SOTA) per-
formance on four PES datasets: FigureSkating, FineDiving, FineGym and Tennis.
Additionally, it excels in the broader Action Spotting task, achieving top results
on the SoccerNet Action Spotting dataset using raw input frames – without rely-
ing on pre-extracted features – and securing 1st place in the 2024 SoccerNet Ball
Action Spotting challenge. The code is available at https://github.com/arturxe2/
T-DEED.

Keywords: Video Understanding, Precise Event Spotting, Action Spotting,
Discriminability
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1 Introduction

Recent advancements in deep learning and computational power have driven remark-
able progress in video understanding. These advancements have enabled researchers
to move beyond simpler tasks like action recognition in trimmed videos [1] to more
complex challenges such as accurate localization of actions within untrimmed videos.
These tasks include Temporal Action Localization (TAL), which represents actions
as temporal intervals, and Action Spotting (AS), which uses single keyframes. While
TAL [2] has historically received more attention, AS has recently gained interest, par-
ticularly in domains such as sports, as fast-paced actions – common in sports videos
– are often better represented by single temporal positions rather than attempting to
determine both the beginning and end of an action. This approach reduces the annota-
tion burden by requiring only a single time mark per action. Moreover, Hong et al. [3]
expanded AS into Precise Event Spotting (PES), using tighter evaluation tolerances
and broadening the concept of actions to more general events (i.e., not requiring to be
triggered by an agent). In the context of sports, since most events are agent-triggered,
we will refer to events and actions interchangeably.

This paper serves as an extension of our previous work [4] and specifically focuses
on the task of Precise Event/Action Spotting in sports, as illustrated in Figure 1. We
conduct our evaluation on four sports datasets: FigureSkating [5] – which includes two
different splits, FS-Comp and FS-Split –, FineDiving [6], FineGym [7], and Tennis [8].
Following Hong et al. [3], we use tight tolerances to accommodate the fast-paced nature
of sporting events, where even a small temporal deviation of 1-2 frames can lead to
missed events. Three main challenges faced by methods addressing this task include:
(1) the need for discriminative per-frame representations to differentiate between
frames with high spatial similarity, particularly when they correspond to different
event labels, (2) the necessity of high output temporal resolution to avoid losing pre-
diction precision, and (3) the variability in the amount of temporal context required
for different events, influenced by dataset characteristics and event dynamics.

Fig. 1: Illustration of the Precise Event Spotting task on the FigureSkating dataset.
Red-marked frames contain events that require precise localization and correct
classification among possible classes.

To address these challenges, we introduce T-DEED, a Temporal Discriminabil-
ity Enhancer Encoder-Decoder for PES in sports videos. By incorporating skip
connections within its encoder-decoder architecture, T-DEED operates across vari-
ous temporal scales, capturing actions that require diverse temporal contexts while
restoring the original temporal resolution, thereby tackling challenges (2) and (3).
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Additionally, it integrates Scalable-Granularity Perception (SGP) [9] based layers
to increase discriminability among features within the same temporal sequence,
addressing challenge (1). To summarize, our main contributions are:

1. We integrate residual connections into the SGP layer, enabling the fusion of features
from multiple temporal scales within the skip connections of our encoder-decoder
architecture. This results in our proposed SGP-Mixer layer, which addresses
challenge (3).

2. We introduce the SGP-Mixer module within the SGP-Mixer layer, which adapts the
SGP module to aggregate information from different temporal scales. This module
shares the core principles of SGP to promote token discriminability while modeling
temporal information, therefore tackling challenge (1).

3. We conduct extensive ablation studies on T-DEED components, highlighting the
advantages of the encoder-decoder architecture combined with SGP-based layers
to enhance token discriminability. Furthermore, T-DEED achieves state-of-the-
art (SOTA) performance across four PES datasets, with improvements in mean
Average Precision (mAP) at a 1-frame tolerance: +1.15 on FineDiving, +3.07 on
FS-Comp, +4.83 on FS-Perf, +0.55 on Tennis, and +4.84 on FineGym.

4. We extend the evaluation of T-DEED to the broader Action Spotting task, achiev-
ing the best results among methods that do not rely on pre-extracted features in
the SoccerNet Action Spotting (SN-AS) dataset. We also secure 1st place in the
2024 SoccerNet Ball Action Spotting (SN-BAS) challenge, improving the previous
baseline by +17.24 points and outperforming the second-best method by +2.04
points.

In the following sections, we detail related work (Section 2), introduce our pro-
posed T-DEED method (Section 3), present the results and ablations (Section 4), and
conclude the paper (Section 5).

2 Related work

Over the past decade, deep learning has driven the field of video understanding through
a remarkable evolution. Initially focused on simple tasks like classifying short-trimmed
videos [10–12], the field has transitioned to more complex challenges, including Tem-
poral Action Localization (TAL) and Action Spotting (AS). Both TAL and AS focus
on temporally locating specific actions within untrimmed videos. TAL specifies tem-
poral intervals for annotations, while AS represents actions with single keyframes,
making TAL suitable for prolonged actions and AS more appropriate for fast-occurring
actions, with the added benefit of reduced annotation costs. Furthermore, Hong et
al. [3] extended the AS task to Precise Event Spotting (PES), introducing a key dif-
ference in the required precision of predictions, limited to only a few frames, and
distinguishing between actions and events. In the sports domain, AS and PES are par-
ticularly popular as they adapt better to its fast nature, leading to the development of
many approaches [3, 13–17] across different sports, including football [18, 19], figure
skating [5], diving [6], gymnastics [7], and tennis [8].
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Given the inherent similarities between TAL and AS, the methodologies developed
for these tasks frequently share common components. However, TAL methods have
attracted more attention due to the earlier introduction of the task and a more exten-
sive set of benchmarking datasets [20–24], placing them a step ahead of AS methods.
In contrast, AS methods have been tailored for specific datasets and competitive
challenges, exemplified by their development in challenges like SoccerNet Action
Spotting and SoccerNet Ball Action Spotting [15, 16]. Notably, E2E-Spot [3] stands
out as the only action or event spotting method evaluated across multiple datasets.

Temporal Action Localization. In TAL methods, a common classification divides
them into two groups: two-stage methods [25–29] and one-stage methods [9, 30–33].
Two-stage methods generate class-agnostic proposals that are later classified into
action labels or background, while one-stage models directly localize and classify
actions in a single step, offering simplicity and achieving SOTA performance in many
TAL and AS scenarios.

Among one-stage methods, early approaches [34, 35] utilized anchor windows
to generate action predictions. Later, Yang et al. [36] introduced an anchor-free
approach, relying on temporal points instead of anchor windows, highlighting the
advantages of both techniques. Building on this approach, current SOTA methods
such as ActionFormer [32] and TriDet [9] have exhibited remarkable performance
across various datasets. They leverage a feature pyramid network to process fea-
tures at different temporal scales, a critical aspect for identifying actions that
require distinct temporal contexts. The main difference lies in their prediction head
and the layers used for feature processing. ActionFormer employs transformer lay-
ers, later revealed to suffer from the rank loss problem [37], negatively impacting
token discriminability. To alleviate this problem, TriDet proposes a more efficient
convolutional-based Scalable-Granularity Perception (SGP) layer, specially designed
to increase token discriminability within the same temporal sequence, contributing
to an improved overall performance. T-DEED, inspired by TAL trends, focuses on
enhancing token discriminability while leveraging multiple temporal scales, with
modifications tailored to meet the precision requirements of PES.

Action Spotting. In AS, techniques similar to those in TAL have demonstrated
SOTA performance on the SoccerNet challenges [15, 16]. Many methods [13, 14, 17]
classify temporal points as either background or actions and refine them through
temporal regression using either convolutional [13] or Transformer-based [14, 17]
approaches. In contrast, Hong et al. [3] propose a simple end-to-end solution that
employs a convolutional backbone with Gate-Shift Modules (GSM) [38] for extract-
ing per-frame features with short-term temporal information, followed by a Gated
Recurrent Unit (GRU) [39] layer for long-term temporal information. This approach
proves effective in their proposed task of PES across four different datasets [5–8], and
is also adaptable to the coarser AS task in SoccerNet.
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While many TAL and AS methods [9, 13, 14, 32] rely on pre-extracted features due to
their efficiency in training, end-to-end approaches have demonstrated that they can be
beneficial in learning more meaningful features in some cases. This is exemplified by
Hong et al. [3], particularly in scenarios where precise predictions are essential, such as
in the case of PES. Exploiting these advantages, T-DEED also adopts an end-to-end
approach.

3 Method

Problem definition. Precise Event Spotting (PES) involves the identification and
localization of events within an untrimmed video X, as illustrated in Figure 1. Given
the video input, the objective is to recognize and locate all the events occurring in
the video, represented as E = {e1, . . . , eN}. The number of events, denoted as N ,
may vary across different videos. Each event instance ei comprises an action class
ci ∈ {1, . . . , C} (where C is the total number of distinct event classes) and its corre-
sponding temporal position ti (i.e. the exact frame where it occurs), forming a pair
ei = (ci, ti).

Method overview. Our model, Temporal-Discriminability Enhancer Encoder
Decoder (T-DEED), is designed to increase token discriminability for Precise Event
Spotting (PES) while leveraging multiple temporal scales. As illustrated in Figure 2,
T-DEED comprises three main blocks: a feature extractor, a temporally discrimi-
nant encoder-decoder, and a prediction head. We process videos through fixed-length
clips, each containing L densely sampled frames. The feature extractor, composed of
a 2D backbone with Gate-Shift-Fuse (GSF) modules [40], handles the input frames,
generating per-frame representations of dimension d, hereby referred to as tokens.
These tokens undergo further refinement within the temporally discriminant encoder-
decoder. This module employs SGP layers which – as shown by Shi et al. [9] –
diminish token similarity, thereby boosting discriminability across tokens within the
same sequence. The encoder-decoder architecture allows the processing of features
across diverse temporal scales, helpful for detecting events requiring different amounts
of temporal context. We also integrate skip connections to preserve the fine-grained
information from the initial layers in subsequent stages of the model. To effectively
merge information proceeding from varying temporal scales in the skip connections, we
introduce the SGP-Mixer layer, detailed in Section 3.2. This layer employs the same
principles as the SGP layer to promote token discriminability while gathering infor-
mation from varying range temporal windows. Finally, the output tokens are directed
to the prediction head, resembling those commonly used in Action Spotting (AS) lit-
erature [13, 14, 17]. It encompasses a classification component to identify whether an
event occurs at the given temporal position or in close proximity (within a radius of
rE frames). Additionally, for the positive classifications, a displacement component
pinpoints the exact temporal position of ground truth events.

Further details of the proposed method are discussed in the following sections.
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Fig. 2: Illustration of T-DEED architecture comprising three key components: (1)
Feature extractor to produce per-frame representations, (2) Temporally discrim-
inant encoder-decoder to capture local and global temporal information while
promoting token discriminability, and (3) Prediction head to generate per-frame
classifications and displacements for refinement.

3.1 Feature extractor

The feature extractor processes the input frame sequence, RL×H×W×3 with H ×W
denoting the spatial resolution, and produces per-frame feature representations, RL×d.
Following Hong et al. [3], we employ a compact 2D backbone to ensure efficiency
and to accommodate longer video sequences. For comparability with previous PES
methods, we choose RegNetY [41] as our feature extractor, known for its efficiency.
To incorporate local temporal information during the extractor, we utilize GSF [40],
which overperforms GSM [38] in action recognition tasks. GSF modules are specifically
applied to the latter half of the RegNetY backbone, allowing for spatial-only modeling
initially, before integrating local temporal context.

3.2 Temporally discriminant encoder-decoder

The temporally discriminant encoder-decoder processes the tokens produced by the
feature extractor module, which contain mainly spatial information, with the objec-
tive of enriching them with essential temporal information – both local and global
– to enable precise event predictions. To accomplish this, it incorporates three key
components: (1) an encoder-decoder architecture for exploiting information across
diverse temporal scales, (2) SGP layers to promote discriminability among tokens
within the same sequence, and (3) our novel SGP-Mixer layer, designed to effectively
fuse features from varying temporal scales while maintaining the distinctiveness of its
output tokens.
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Encoder-decoder architecture. Various works [9, 13, 32] have shown the benefits
of processing features at different temporal scales in tasks related to action recogni-
tion. This is because certain actions inherently require longer temporal context for
recognition and localization, while others can be identified with just a few frames.
SOTA models in TAL achieve this by employing a feature pyramid, where the tempo-
ral dimension is downscaled by a factor of k in the final layers through max-pooling,
and predictions are made for each output feature at various temporal scales. How-
ever, in PES, where precision is crucial, this is detrimental. As shown in Section 4.6,
the further down we go in the feature pyramid, the more deminishes the precision of
the output predictions, impacting model performance. To address this issue while still
leveraging different temporal scales, we propose an encoder-decoder architecture. After
temporal downscaling during the encoder, akin to the feature pyramid, we restore the
original temporal resolution through the decoder, thereby regaining frame-level gran-
ularity for the representations. We do this by incorporating skip connections from the
encoder to the decoder’s upsampling.

Specifically, the encoder begins by complementing the tokens with a learnable
encoding that specifies its temporal position. Furthermore, it comprises B encoder
blocks, each consisting of an SGP layer to promote discriminability while capturing
temporal context, and a max-pooling operation to reduce the temporal dimension by
a factor of k. An additional SGP layer is applied in the neck of the encoder-decoder,
before passing the features to the decoder. In the decoder, the original temporal
resolution is restored through B decoder blocks. Each of these blocks incorporates an
SGP-Mixer layer, which extends the SGP layer to increase the temporal dimension
by a factor of k while integrating information coming from its corresponding skip
connection.

SGP layer. The SGP layer, as introduced by Shi et al. [9], addresses the rank-
loss problem [37] commonly encountered in Transformers [42], thus improving token
discriminability within sequences. As shown on the left of Figure 3, it replaces the
self-attention module in Transformer layers with a SGP module (depicted on the
right). This is a convolutional-based module that comprises two primary branches:
an instant-level branch and a window-level branch. The instant-level branch aims
to promote token discriminability by comparing each token to the clip-level average
token, adjusting the token’s distinctiveness whenever beneficial for the network. The
window-level branch captures temporal information from multiple receptive fields.
Furthermore, the SGP layer replaces one of the layer normalization modules with
group normalization.

Given its advantageous characteristics, which contributed to Tridet’s SOTA
results in TAL, we believe it can be even more beneficial in PES, where precise
frame-level predictions are crucial and can benefit from improved discriminability
between concurrent tokens, as discussed in Section 4.6.
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(a) Illustration of the SGP layer structure (left).
The SGP module (right) includes an instant-level
branch to promote token discriminability and a
window-level branch for temporal modeling.

Fig. 3: SGP Layer.

More formally, the SGP module can be defined as:

fSGP (x) = IB(x) +WB(x) + x, (1)

where IB(·) represents the instant-level branch operations, and WB(·) represents
the window-level branch operations, defined as follows:

IB(a) = ϕ(a) ⊗ FC(a), with ϕ(a) = ReLU(FC(AvgPool(a))) (2)

WB(a) = ψ(a) ⊗ (Convw(a) + Convrw(a)), with ψ(a) = Convw(a) (3)

Here, Convk represents a convolutional layer with a kernel size of k, FC is a
fully-connected layer, and ⊗ indicates element-wise tensor multiplication.

SGP-Mixer layer. As shown on the left in Figure 4, the SGP-Mixer layer extends
the original SGP layer to accommodate two inputs with distinct temporal scales.
This adaptation becomes necessary in the decoder due to the reception of an input
feature z ∈ RL/kj×d from the preceding decoder layer, and encoder features x ∈
RL/k(j−1)×d via the skip connection, where j ∈ {1, . . . , B} denotes the depth within the
decoder blocks. Both features undergo layer normalization before entering the SGP-
Mixer module, where a combination of both features is generated. Finally, the output
features are further processed through identical components within an SGP layer.

The fusion of both features is done in the SGP-Mixer module as detailed on the
right of Figure 4. First, the features from the previous layer are upsampled to match

the temporal dimensions (RL/kj → RL/k(j−1)

) using linear interpolation. With both
features now sharing the same temporal resolution, the SGP-Mixer module – build-
ing on the principles of the SGP layer – utilizes two instant-level branches, one for
each input feature, to promote token discriminability. This is particularly important
for the features coming from the previous layer, since upsampling may produce sim-
ilar tokens in adjacent temporal positions. In addition, it includes two window-level
branches to aggregate information from both features while capturing different tem-
poral contexts. In each branch, one feature evolves to mix information across different
temporal receptive fields, which is later gated by the other feature. Shortcuts are also
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(a) Illustration of the SGP-Mixer layer
structure (left), which integrates an
SGP-Mixer module to aggregate fea-
tures across different temporal scales
before applying the SGP layer. The
SGP-Mixer module (right) follows SGP
principles to promote token discrim-
inability while merging the features.
The branches in the SGP-Mixer are
combined via concatenation and a lin-
ear layer.

Fig. 4: SGP-Mixer Layer.

introduced, but unlike SGP, feature aggregation from different branches involves con-
catenation and linear projection, which we find more effective than simple addition,
as will be shown later in Section 4.6.

More formally, the SGP-Mixer can be defined as:

fSGP−Mixer(x, z) = PFFN(Concat[IB(x), IB(LI(z)),WB(x, LI(z)),

WB(LI(z), x), LI(z), x]) (4)

where LI(·) is the linear interpolation operation, Concat[·] denotes concatenation
operation along the features’ dimension, and PFFN refers to a point-wise feed-forward
network with two fully-connected layers. IB(·) and WB(·) are the instant-level and
window-level operations as in the SGP module, with the window-level branch (WB)
now modified to accept two inputs, defined as:

WB(a, b) = ψ(a) ⊗ (Convw(b) + Convrw(b)), (5)

3.3 Prediction head

Following common AS approaches [13, 14, 17], we include a prediction head consisting
of a classification head and a displacement head. The classification head uses a linear
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layer and a softmax activation to project the output of the temporally discriminant
encoder-decoder, RL×d, onto ŷc ∈ RL×(C+1), representing the probability of each
temporal position containing each of the events or a background class. Similarly, the
displacement head uses a linear layer to project the same output to ŷd ∈ RL×1,
representing the displacement toward the ground truth event if an actual event is
present at the corresponding temporal position.

3.4 Training details

The model is trained using a combination of a classification loss (Lc) and a displace-
ment loss (Ld). For classification, per-frame cross-entropy loss is employed weighting
the positive classes by a factor of w for all events. Mean squared error is used for
displacement. The final loss (L) for a given clip is the sum of both losses:

L = Lc + Ld =
1

L

L∑
l=1

CEw(ycl , ŷ
c
l ) +MSE(ydl , ŷ

d
l ), (6)

where ycl represents the one-hot encoding of the event in frame l, ŷcl denotes the
classification probabilities at that frame, ydl indicates the actual displacement to a
ground-truth event (if an event is within the detection radius rE), and ŷdl represents
the predicted displacement.

During training, unless otherwise specified, clips are randomly sampled from the
training split, and standard data augmentation techniques are applied across all
datasets, including random cropping, horizontal flipping, Gaussian blur, color jitter,
and mixup [43].

3.5 Inference

At inference time, the data augmentation techniques are disabled and we use clips
with 75% of overlapping. Moreover, to reduce the number of candidate events, Soft
Non-Maximum Suppression (S-NMS) [44] is applied.

4 Results

In this section, we detail the evaluation setup for our proposed method and present
experimental results demonstrating its superiority over current SOTA methods in PES
and AS on the application domain of sports data. Additionally, we conduct ablations
on key components of our proposal.

4.1 Datasets

We conduct experiments on six different sports datasets, four dedicated to PES and
two to the broader AS task:

• The FigureSkating [5] dataset contains 11 videos featuring 371 short program
performances from the Winter Olympics and World Championships, recorded at 25
frames per second (fps) and annotated with four different event classes. Following
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Hong et al. [3], we use two different splits: the Competition Split (FS-Comp) and
the Performance Split (FS-Perf).

• The FineDiving [6] dataset consists of 3000 diving clips at 25 fps, annotated with
four different event classes representing transitions between the different phases of
a dive.

• The Tennis [8] dataset, initially introduced in Vid2Player [8] and later extended
by Hong et al. [3], includes 3345 video clips from 28 tennis matches, each showing
a single point and annotated with six event classes. The frame rates range between
25 and 30 fps.

• The FineGym [7] dataset consists of 5374 untrimmed gymnastics videos, annotated
with 32 different events. While the original videos had frame rates between 25 and
60 fps, we follow Hong et al. [3] and resample some videos to standardize the frame
rates between 25 and 30 fps. As in E2E-Spot, we report performance on both the
full set of classes (FG-Full) and a subset with only start-of-event classes (FG-Start).

• The SoccerNet Action Spotting (SN-AS) [19] dataset includes 550 football
game broadcasts at 25 fps, with sparse annotations covering 17 different actions.

• The SoccerNet Ball Action Spotting (SN-BAS) [19] dataset contains 9
football matches recorded with a single camera and densely annotated with 12
ball-related actions. The videos are recorded at 25 fps.

Tables 8, 9, 10, 11, 12, and 13 show the different classes for each dataset and the
total number of observations across the train, validation, and test splits. As shown,
for the four PES datasets, most actions have a decent number of observations, except
for the last two events in FineGym, which have only 49 observations. In contrast, SN-
AS and SN-BAS contain several actions with very few examples, making them more
challenging for the model to learn.

4.2 Action Spotting (AS) adaptation from Precise Event
Spotting (PES)

Adapting T-DEED from PES to the broader AS tasks in the SoccerNet datasets is
relatively straightforward due to the similarity between the tasks. The main adjust-
ment involves tuning the model hyperparameters to handle longer clips at a lower
frame rate. However, for the SN-BAS dataset, which suffers from limited data for
some classes, additional adaptations are necessary to enhance performance.

SN-BAS adaptations. As detailed in Section 4.1, the SN-BAS dataset is relatively
small, with only 9 games and some actions occurring infrequently, complicating the
training process due to the limited number of examples. To mitigate this issue, we
train T-DEED using both the SN-BAS dataset and the larger, related SN-AS dataset,
which contains 550 games and shares some overlapping actions. We achieve this by
incorporating two prediction heads into our architecture – one for each dataset –
allowing T-DEED to train in a multi-task manner and improve performance on SN-
BAS through the complementary data provided by SN-AS. During training, half of
the clips are sampled from SN-BAS and the other half from SN-AS. The final loss
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is computed by summing the individual losses from each dataset after applying their
respective prediction heads.

4.3 Evaluation

Following standard practices, we train the models on the training splits, use the val-
idation splits for early stopping, and evaluate them on the test splits for FineDiving,
FigureSkating, Tennis, FineGym, and SN-AS. However, to participate in the SN-BAS
challenge, we utilize all available data (train, validation, and test splits) to train the
model and evaluate it on the challenge split with unknown labels. Model performance
is assessed using the mAP metric, which calculates the mean of Average Precisions
across different events. For FineDiving, FigureSkating, Tennis, and FineGym, we eval-
uate two versions of the metric: a tight mAP metric with a tolerance of δ = 1 frame
and a loose version with δ = 2 frames. For SN-AS, the mAP is averaged over tolerances
ranging from 0.5 to 2.5 seconds1, with 0.5-second increments for the tight metric, and
from 2.5 to 30 seconds in 2.5-second increments for the loose metric. For SN-BAS, a
tolerance of 0.5 seconds is applied.

4.4 Implementation details

We train T-DEED using clips of L = 100 frames sampled at the original frame rate
for FineDiving, FigureSkating, Tennis, and FineGym, at 2 fps for SN-AS, and at 12.5
fps for SN-BAS, with a batch size of 8 clips. Frame resolution is set to 398 × 224
for FigureSkating, Tennis, and SN-AS; 224 × 224 for FineDiving and FineGym; and
796×448 for SN-BAS, with random cropping to 224×224 for FigureSkating and Tennis.
Each epoch consists of 5000 clips randomly sampled from the training videos, except
for SN-BAS, where it is doubled since we train on both SN-BAS and SN-AS data
simultaneously. The models are trained for 50 epochs on FineDiving, FigureSkating
and Tennis datasets, 100 epochs for the larger FineGym and SN-AS datasets, and 35
epochs for SN-BAS. We use the AdamW optimizer [45] with a base learning rate of
8e-4, incorporating 3 linear warmup epochs followed by cosine decay. Positive classes
in the cross-entropy loss are weighted by a factor w = 5 in order to compensate for
the presence of the background (no action) class. We evaluate two versions of our
feature extractor, RegNetY-200MF and RegNetY-800MF, with hidden dimensions set
to d = 368 and d = 768 respectively, and a max-pooling stride (downscaling factor) of
k = 2. Additional dataset-specific hyperparameters can be found in the supplementary
material.

4.5 Comparison to SOTA

Precise Event Spotting task. In Table 1, we compare our proposed T-DEED in two
variations – utilizing smaller and larger feature extractors – against previous SOTA
models across six configurations: FS-Comp, FS-Perf, FineDiving, Tennis, FG-Full,

1The metric used aligns with the SoccerNet evaluation protocols, though the reported tolerance values
may differ. In our case, δ is defined such that an action is considered correct if it falls within the interval
[tgt − δ, tgt + δ]. In other approaches, the tolerance is typically interpreted as the interval [tgt − δ

2 , tgt +
δ
2 ],

where tgt represents the temporal position of the ground truth action.
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FS-Comp FS-Perf FineDiving
Model Size OF δ = 1 2 1 2 1 2

E2E-Spot [3] 200MF 81.0 93.5 85.1 95.7 68.4 85.3
E2E-Spot [3] 800MF 84.0 - 83.6 - 64.6 -
E2E-Spot [3] 800MF ✓ 83.4 94.9 83.3 96.0 66.4 84.8

T-DEED 200MF 85.15 91.70 86.79 96.05 71.48 87.62
T-DEED 800MF 84.77 92.86 88.17 95.87 73.23 88.88

Tennis FG-Full FG-Start
Model Size OF δ = 1 2 1 2 1 2

E2E-Spot [3] 200MF 96.1 97.7 47.9 65.2 61.0 78.4
E2E-Spot [3] 800MF 96.8 - 50.1 - - -
E2E-Spot [3] 800MF ✓ 96.9 98.1 51.8 68.5 65.3 81.6

T-DEED 200MF 97.03 97.92 55.97 68.55 68.06 81.00
T-DEED 800MF 97.45 97.97 56.64 69.77 68.68 82.05

Table 1: Comparison of state-of-the-art methods across the FigureSkating
(FS-Comp and FS-Perf splits), FineDiving, Tennis, and FineGym (FG-Full
and FG-Start) datasets. The best results in terms of mAP are highlighted
in bold, while the second-best results are underlined. For a fair comparison,
we report the feature extractor sizes in MegaFlops (MF). Models shaded
in gray are not comparable due to the inclusion of Optical Flow (OF) [46]
in addition to RGB images.

and FG-Start. As shown, T-DEED consistently achieves the best performance on the
tight metric across all configurations. Notably, the largest improvements are observed
in FG-Full and FineDiving, with gains of +4.84 and +4.83 points respectively. On
the Tennis dataset, the improvement is smaller at +0.55 points, which is expected
given the already saturated performance levels on this dataset. For the loose metric,
with a tolerance of δ = 2 frames, results vary across datasets. T-DEED remains
superior or comparable to previous methods in most cases, though it falls slightly
behind on FS-Perf. We attribute this to the use of dilation in the E2E-Spot model
for the FigureSkating dataset, which appears to offer advantages when using larger
temporal tolerances.

Additionally, in Tables 8, 9, 10, and 13, we present the per-class results for all
datasets. In the FigureSkating dataset, the performance across different classes is
relatively consistent, with slightly better results for takeoff classes in FS-Comp, and
jump-related classes showing the highest performance in FS-Perf. In the FineDiving
dataset, the model struggles the most with accurately locating the class representing
the transition towards a twist. The Tennis dataset, on the other hand, shows a highly
saturated performance, with exceptionally high scores across all classes, particularly
for serves. Finally, the FineGym dataset presents more variability, with some classes
achieving good performance while others with a really low performance. As noted by
Hong et al. [3], the annotations in this dataset are not always entirely precise, which
complicates both model learning and evaluation.
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Action Spotting in SN-AS. In Table 2, we present results on the SN-AS dataset,
focusing only on methods that have evaluated their performance on the test split,
excluding those that report only challenge results, for a fair comparison. We distinguish
between methods using an end-to-end approach and those relying on pre-extracted
features. As demonstrated in the SoccerNet 2022 [16] and 2023 [15] challenges, Baidu
features [47] – which combine outputs from five backbones fine-tuned on SoccerNet
along with 77 additional non-public additional games – have boosted performance in
this task. However, this approach is not easily generalizable to new games or datasets,
limiting its practicality, and it is not directly compared to other approaches due to
the use of non-public data. In contrast, end-to-end approaches are more general and
thus more practical. As shown in the table, the highest-performing methods utilize
pre-extracted features, achieving an Average-mAP of up to 73.10. Among end-to-end
approaches, T-DEED outperforms E2E-Spot and is only a few points behind methods
that use specialized features and architectures tailored to the dataset. This highlights
T-DEED as a strong initial approach for this task, without relying on pre-extracted
features or dataset-specific architectures.

Average-mAP
Model Baidu features tight (0.5-2.5 seconds) loose (2.5-30 seconds)

Zhou et al. [47] ✓ 47.05 73.77
E2E-Spot (800MF) [3] 61.82 74.05
Soares et al. [13] ✓ 65.10 78.50
ASTRA [14] ✓ 66.82 77.09
COMEDIAN2 [17] ✓ 73.10 -

T-DEED (200MF) 61.52 71.99
T-DEED (800MF) 63.42 74.97

Table 2: Comparison of SOTA methods on the SN-AS dataset test split, report-
ing the Average-mAP for each method. Methods shaded in gray use pre-extracted
Baidu Features and are thus not directly comparable.

Additionally, in Table 3, we compare the per-class results of our end-to-end
method with the only feature-based approach that reports per-class results, ASTRA.
The performance gap between our method and the feature-based approach is most
noticeable in classes with low frequency of occurrence or high intra-class variability,
where the additional data used to fine-tune the backbones for the Baidu features
can impact the results. However, in most other classes, our results are comparable to
those of the feature-based approach.

Action Spotting in SN-BAS. Finally, we evaluated T-DEED on the 2024 SN-BAS
challenge. Due to the dataset’s small size, as detailed in Section 4.2, we trained T-
DEED jointly on SN-AS and SN-BAS. Three different submissions were made, varying
in sampling strategy and evaluation protocol:

2Although COMEDIAN uses raw frames as input, pre-extracted Baidu features are employed during pre-
training, so we classify it with methods using pre-extracted features. Additionally, inconsistencies between
test and challenge split results, with the test performance higher, suggest possible overfitting on this split.
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Model Model
Action ASTRA T-DEED Action ASTRA T-DEED

Ball out of play 80.70 80.21-0.49 Kick-off 68.41 62.52-5.89
Throw-in 78.99 79.55+0.56 Direct free-kick 73.98 65.17-8.81
Foul 77.89 75.49-2.40 Offside 61.31 59.38-1.93
Indirect free-kick 56.25 58.86-2.61 Yellow Card 65.29 67.82+2.53

Clearance 66.00 67.32+1.32 Goal 84.19 81.93-2.26
Shot on target 61.96 51.11-10.85 Penalty 86.74 79.48-7.26
Shot off target 65.94 58.77-7.17 Red Card 40.42 33.37-7.05
Corner 83.96 84.02+0.06 YC → RC 28.46 17.69-10.77
Substitution 55.51 59.07+3.56

Table 3: Per-class results of ASTRA and T-DEED on the SoccerNet AS
dataset, showing the Average-AP score for each action, sorted by frequency
from most to least common.

• T-DEED(c): Uniform sampling from all possible clips, trained on the train and test
splits, with the validation split used for early stopping.

• T-DEED(b): Uniform sampling from SN-BAS and action-specific sampling from
SN-AS, trained on the train and test splits, with the validation split used for early
stopping.

• T-DEED(a): An ensemble of two T-DEED models – one sampling from all clips and
the other from action-specific clips in SN-AS – trained on all available splits (train,
validation, and test). Results were aggregated by averaging per-frame probabilities
after applying the predicted displacements.

Rank Model mAP (δ = 0.5s.)

1 T-DEED(a) 73.39
2 UniBw Munich - VIS 71.35
- T-DEED(b) 67.92
3 FS-TAHAKOM 67.09
- T-DEED(c) 66.55
4 MobiusLabs 62.53
5 AI4Sports 62.44
6 Team sota 62.44
7 SAIVA 56.74

8 Baseline 56.15

Table 4: SN-BAS 2024 Challenge results. For
each method, we report its competition rank
along with the corresponding mAP score.

As shown in Table 4, all three submissions outperform the baseline and many com-
petitors by a large margin. Notably, when comparing T-DEED(c) and T-DEED(b),
we observe that sampling directly from action-specific clips in SN-AS slightly improves
performance, likely benefiting tail classes by addressing the dataset’s long-tail prob-
lem. However, both methods fall short compared to our main submission, T-DEED(a),
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which achieved first place in the challenge with a mAP of 73.39 – outperforming the
second place by +2.04 points and the baseline by +17.24 points. Additionally, T-
DEED(a) shows a +5.38 point improvement over our previous submissions, likely due
to training on all available data (train, validation, and test splits), which is crucial
given the dataset’s size. The ensemble approach in T-DEED, combining predictions
from two models, likely further boosted performance, contributing to the SOTA results
on SN-BAS.

4.6 PES ablations

In this section, we incrementally ablate the different components of our approach. We
start with a base model consisting of the feature extractor without GSF, producing
features with only spatial information, and plain layers of the different temporal
approaches. Initially, we consider only the classification head (i.e., L = Lc), resulting
in per-frame classifications. For each approach, we evaluate multiple configurations
with different hyperparameters (e.g., number of layers) and present results with the
best configuration, reporting the mAP with a tolerance of δ = 1. Each experiment is
trained with two different seeds and we report the average for robustness. Ablations
are conducted using two datasets: FineDiving and FigureSkating on the FS-Comp
split.

Promoting token discriminability. As previously discussed, tasks like PES require
a large enough number of tokens for sufficient temporal precision. However, the greater
the number of tokens the larger the information redundancy, especially between nearby
tokens (corresponding to apperance-wise similar frames). Increasing the discriminabil-
ity among those tokens is key to preventing precision loss of the predictions. Here,
we evaluate the discriminability of three commonly used layers for modeling temporal
information: Transformer [42], GRU [39], and SGP [9]. To quantify discriminability,
we use the validation split, first scaling the tokens within each feature dimension (i.e.,
zli,d/maxj |zlj,d|, with zl ∈ RK×D representing all K tokens at layer l, each of dimen-
sion D) to ensure all values fall within the same range, as justified in D. We then
compute the average cosine similarity between each token and the mean token of the
sequence, following Shi et al. [9].

Figure 5 illustrates this analysis. In the initial layers, we observe similar patterns
between the Transformer and the SGP, where tokens exhibit high similarity after
the spatial backbone(BB) and the addition of learnable positional encodings(PE).
However, token similarity decreases after the introduction of the first layer that
incorporates temporal context(L1), allowing for better differentiation between sim-
ilar frames. As we move through the layers, the SGP maintains either similar or
slightly increased similarity, whereas in the Transformer, the increase is more pro-
nounced, particularly in the final layer. This result highlights the rank-loss problem in
Transformer, leading to reduced token discriminability. In contrast, the GRU, which
typically requires fewer layers, exhibits a different pattern: it shows lower similarity
after the backbone and positional encoding but increased similarity in the output
tokens, with values higher than those of the SGP. As a result, SGP layers present the
lowest token similarity (i.e., the highest discriminability), proving their effectiveness
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(a) FS-Comp discriminability analysis. (b) FineDiving discriminability analysis.

Fig. 5: Temporal module discriminability analysis. Cosine similarity after back-
bone (BB), post-positional encoding (PE), and at each temporal layer is displayed.
Additionally, mAP performance with δ = 1 is reported.

in enhancing token distinctiveness. This enhanced discriminability also translates to
superior performance across temporal modules, as shown in Table 5(a). These find-
ings highlight the benefits of using the SGP layer, especially for precision-demanding
tasks like PES.

We further analyze the discriminability between two subgroups of tokens: those
that, in the ground-truth space, correspond to the same event (e.g., two background
positions or two temporal positions within the same event class), and those corre-
sponding to different classes (e.g., a background token versus a token representing a
specific event). This analysis is conducted on the last layer of the different modules,
as we are particularly interested in achieving high discriminability just before the
prediction heads—especially among tokens representing different events, rather than
those from the same class. In addition, we incorporate the SGP-Mixer into this analy-
sis, since the outputs on the final layer are comparable—unlike the previous per-layer
analysis where different temporal resolutions were a factor.

As shown in Figure 6, we observe distinct distributions of token similarities between
the two subgroups across all temporal modules. Tokens representing different actions
exhibit lower similarity, which is a desirable result as it reflects an improved ability to
distinguish between different action labels. This difference in similarity distribution is
particularly pronounced in the FigureSkating dataset, leading to higher mAP scores,
as shown in Table 5, while posing more challenges for the FineDiving dataset. More-
over, the findings from our previous analysis on overall discriminability align with this
subgroup analysis. Specifically, SGP and SGP-Mixer architectures show lower simi-
larity among tokens of different labels when compared to Transformers and GRUs,
indicating superior discriminability. More importantly, SGP-Mixer further improves
the discriminability in the FigureSkating dataset. In the FineDiving dataset, SGP
certainly shows slightly better discriminability than SGP-Mixer. However, the latter
seems to generate more distinct distributions between the two subgroups.
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(a) FigureSkating - GRU (b) FineDiving - GRU

(c) FigureSkating - Transformer (d) FineDiving - Transformer

(e) FigureSkating - SGP (f) FineDiving - SGP

(g) FigureSkating - SGP-Mixer (h) FineDiving - SGP-Mixer

Fig. 6: Discriminability analysis in the last layer for different temporal modules: GRU,
Transformer, SGP, and SGP-Mixer. The distributions of token similarity are shown
for two subgroups: tokens with the same ground-truth label and those with different
ground-truth labels. The vertical line indicates the mean similarity for the second
subgroup (i.e., ”vs different label token”).
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FS-Comp FineDiving
Experiments mAP (δ = 1) mAP (δ = 1)

(a) Temporal module
Transformer 69.68 59.84
GRU 72.04 59.09
SGP 73.14 60.07

(b) Skip connection
w/o 74.29 63.01
sum 73.27 60.14
concat 76.78 61.90
SGP-Mixer (sum) 76.88 61.34
SGP-Mixer 77.96 63.67

Table 5: Ablation of T-DEED’s main compo-
nents using mAP with δ = 1, highlighting the
best results in bold.

Defining multiple temporal scales. Employing multiple temporal scales while
processing videos has proven effective across various TAL and AS methodolo-
gies [9, 13, 32]. Here, we evaluate our encoder-decoder architecture, operating on
multiple temporal scales, using diverse mixture approaches in skip connections. Specif-
ically, we assess five variations of the encoder-decoder architecture: (1) no skip
connections, (2) addition, (3) concatenation and linear projection, (4) a modified
SGP-Mixer aggregating branches information with summation, and (5) our proposed
SGP-Mixer layer. Results of these approaches are presented in Table 5b.

We observe that all encoder-decoder based approaches, with or without skip
connections, outperform the baseline using a single scale (Transformer, GRU, and
SGP). This underscores the importance of capturing information from multiple tem-
poral scales, effectively achieved in our encoder-decoder. However, further analysis
reveals issues with approaches utilizing addition for feature aggregation within skip
connections, as they tend to yield inferior results compared to alternative methods.
We hypothesize that this problem may be due to the attribution of equal weight to
features from skip connections and previous layers when adding them. This could be
particularly critical in the top layers of the architecture, where information passed
from skip connections may be too primitive. Finally, our proposed SGP-Mixer layer
stands as the best approach for both datasets in aggregating information within
the skip connections. This emphasizes the advantages of our SGP-Mixer layer in
aggregating information across multiple temporal scales while promoting token dis-
criminability.

Introducing the displacement head. In Table 6a we evaluate various methods for
addressing the imbalance between frames containing actual events and background
frames in PES. We include label dilation, which involves extending the ground-truth
positive labels by a specified radius around the exact temporal position during train-
ing, and may impact prediction precision. Additionally, we asses the utilization of a
displacement head, as detailed in Section 3.3. Results indicate that the prediction
head offers more benefits compared to label dilation, enabling wider range of event
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detection without sacrificing prediction precision.

FS-Comp FineDiving
Experiments mAP (δ = 1) mAP (δ = 1)

(a) Displacement head
w/o & dilation = 0 74.74 63.67
w/o & dilation = 1 77.96 61.97
rE = 1 78.20 67.49
rE = 2 77.12 68.31

(b) Feature pyramids
Tridet 68.31 64.28

(c) Feature extractor
w/ gsm 81.00 67.95
w/ gsm (half) 81.05 67.47
w/ gsf 80.43 67.87
w/ gsf (half) 81.25 68.40

(d) Clip length
L = 25 frames 71.02 66.61
L = 50 frames 76.87 64.84
L = 100 frames 81.25 68.40
L = 200 frames 79.19 65.29

(e) Postprocessing
NMS [48] 83.79 71.10
SNMS [44] 85.15 71.48

Table 6: Further ablations and analysis of T-
DEED using mAP with δ = 1.

Feature pyramids. A common approach in TAL to process multiple temporal
scales is the use of feature pyramids, which resembles using only the encoder of our
approach. In Table 6b, we explore adapting the SGP Feature Pyramid proposed in
Shi et al. [9] to our task. This method generates predictions at each temporal scale
and integrates a displacement head to locate them. However, we observe a perfor-
mance decrease compared to our encoder-decoder architecture. Further analysis of
the predictions produced at each layer of the pyramid, depicted in Figure 7, reveals
a decrease in performance as we descend the pyramid towards more high-level but
lower-resolution features. This suggests that generating predictions at lower reso-
lutions may compromise the accuracy. At the same time, predictions based on the
low-level features on the initial layers are also suboptimal due to their lack of tempo-
ral context. Our encoder-decoder architecture is able to model high-level information
while recovering the original temporal resolution, thus avoiding losing the temporal
precision that is critical in PES.

Feature extractor ablations. In Table 6c, we explore the impact of integrating
different temporal shift modules into our 2D backbone to capture local temporal
context. Specifically, we consider two modules, GSM [38] and GSF [40], known for
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Fig. 7: Per-layer mAP analysis using the Feature Pyramid Network. mAP is reported
at each layer of the SGP feature pyramid, accumulating predictions from previous
layers, for the FineDiving and FigureSkating datasets.

their effectiveness in action recognition tasks. We assess two variants: one applying
these modules across all backbone layers, and another limited to the latter half to
promote stronger spatial modeling before temporal integration. Following [3], we
apply these modules to 1

4 of the channels of the residual blocks. Results indicate that
incorporating local temporal modeling into the backbone is especially useful in the
FigureSkating dataset, while FineDiving shows comparable results to those without
temporal modules. Notably, GSF applied to the latter half of the backbone yields the
best performance for both datasets.

Clip length analysis. Regarding optimal clip length, Table 6d evaluates various
number of frames. In FigureSkating, performance improves with increasing clip
length, plateauing at 100 frames. Similarly, results for FineDiving also indicate 100
frames as the optimal choice.

Postprocessing analysis. In Table 6e, we illustrate the impact of employing two
different postprocessing techniques, Non-Maximum Suppression (NMS) [48] and Soft
Non-Maximum Suppression (SNMS) [44], after adjusting their parameters. The opti-
mal results are achieved with a 1-frame window for NMS and a 3-frame window for
SNMS. Notably, SNMS consistently improves mAP for both datasets.
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Training data Training data
Action BAS BAS+AS Action BAS BAS+AS

Pass 85.13 85.93+0.80 Cross 69.46 75.84+6.38

Drive 79.00 79.56+0.56 Ball player block 20.77 28.87+8.10

High pass 75.43 81.29+5.86 Shot 46.68 70.07+23.39

Header 66.64 67.05+0.41 Successful tackle 2.50 1.21-1.29
Ball out of play 23.63 29.19+5.56 Free-kick 71.22 92.43+21.21

Throw-in 71.19 83.54+12.35 Goal 5.51 11.94+6.43

mAP 51.43 58.91+7.48

Table 7: Per-class results of T-DEED on the SoccerNet BAS dataset, comparing the
use of only SN-BAS data and the combination of SN-AS and SN-BAS data. Table
shows the Average-AP score for each action, sorted by frequency from most to least
common.

4.7 SN-BAS ablations

In addition to the previous ablations that justified the various components of T-DEED,
this section focuses on the adapation made to fit T-DEED to the SN-BAS dataset.
Specifically, we show the importance of complementing the training with the original
SN-AS dataset by using two prediction heads, which help mitigate the problems of
the small SN-BAS dataset. Unlike the results reported in the challenge, here we train
T-DEED on the training splits of both SN-AS and SN-BAS, use the validation splits
for early stopping, and evaluate only on the test split of SN-BAS.

Table 7 compares T-DEED trained on both SN-AS and SN-BAS to training only on
SN-BAS. The results show that incorporating the additional related data from SN-AS
leads to a mAP improvement of +7.48 points. Examining the per-class improvements,
we observe that the classes benefiting most from joint training are those present in
both datasets and few instances in SN-BAS, such as shots, free-kicks, and throw-ins.
However, for classes with high intra-class variability and limited samples, such as ball
player blocks and successful tackles, performance remains low, indicating the need for
more data to improve detection of these actions.

4.8 Qualitative results

Finally, we present qualitative results for all datasets in Figures 8, 9, 10, 11, 12, 13,
and 14. For a sample clip from the test split, we display ground-truth annotations
alongside the predicted probabilities for each action class.

In Figures 8 and 9, the predictions on the FigureSkating dataset are highly
aligned with the ground-truth annotations, with only minor temporal deviations and
consistently high confidence. Similarly, Figure 10 shows strong performance on the
FineDiving dataset, though some duplicated detections occur near a ground-truth
twist, indicating challenges in precisely localizing the twist action, as detecting the
exact moment when the rotation around the body’s vertical axis finishes can be diffi-
cult, especially depending on certain camera angles. In the Tennis dataset, as shown
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in Figure 11, the qualitative results are consistent with the quantitative findings, with
a high level of alignment between predictions and ground truth. However, an incorrect
prediction is observed for a far court swing, where a swing is detected after the point
has ended, which should not have been the case. Figure 12 highlights the challenges
posed by the FineGym dataset. Although T-DEED detects most actions, it does so
with reduced confidence and multiple predictions around the ground-truth, demon-
strating the difficulties in achieving precise predictions for some classes. Finally, for
the SoccerNet datasets (SN-AS and SN-BAS), as seen in Figures 13 and 14, the results
are good, with most ground-truth actions correctly detected. However, some impreci-
sion is observed in a few predictions, but confidence remains high, especially near the
ground-truth locations.

5 Conclusion

This work presented T-DEED, a model designed to address Precise Event Spotting
across various sports datasets. Ablation studies underscored the importance of pro-
cessing videos in multiple temporal scales and promoting token discriminability for
precise predictions. To address these challenges, we integrated an encoder-decoder
architecture and proposed the SGP-Mixer layer, aimed at aggregating information at
various temporal scales within skip connections while improving token discriminabil-
ity. In our experiments, T-DEED achieved SOTA performance on four different PES
sports datasets (FigureSkating, FineDiving, Tennis, and FineGym), obtained the best
results among methods not using pre-extracted features on SoccerNet Action Spot-
ting, and secured 1st place in the 2024 SoccerNet Ball Action Spotting Challenge.
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A Datasets per-class analysis

In this section, we report the number of observations for each event or action across
all datasets. Additionally, for FigureSkating, FineDiving, Tennis, and FineGym, we
provide the Average Precision obtained by our model with the two RegNetY’s variants
(200MF and 800MF) for the different classes separately, extending the analysis in
Section 4.5. For SN-AS and SN-BAS we only show the number of observations per
class, given that per-class results have already been analyzed in the main paper.

AP (δ = 1)
FS-Comp FS-Perf

Event Nº observations 200MF 800MF 200MF 800MF

Jump takeoff 1464 86.21 85.66 88.39 90.83
Jump landing 1464 83.70 85.24 88.18 90.67
Flying spin takeoff 373 86.03 85.06 84.24 87.07
Flying spin landing 373 83.83 82.73 86.35 84.12

Table 8: Classes, number of observations per class, and per-class Average Precision
with a tolerance of δ = 1 frame in the FigureSkating dataset.

AP (δ = 1)
Event Nº observations 200MF 800MF

Entry 2984 72.70 76.70
Som(s).Pike 2152 75.87 75.76
Som(s).Tuck 1071 75.71 74.77
Twist(s) 803 61.87 65.70

Table 9: Classes, number of observations per class, and per-class Average Precision
with a tolerance of δ = 1 frame in the FineDiving dataset.
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AP (δ = 1)
Event Nº observations 200MF 800MF

Far-court ball bounce (FCB) 8150 94.56 95.06
Near-court ball bounce (NCB) 8127 95.23 95.54
Far-court swing (FCSw) 7123 95.28 97.23
Near-court swing (NCSw) 7044 98.36 98.43
Near-court serve (NCSe) 1690 99.26 99.01
Far-court serve (FCSe) 1657 99.47 99.39

Table 10: Classes, number of observations per class, and per-
class Average Precision with a tolerance of δ = 1 frame in the
Tennis dataset.

Event Nº observations

Ball out 31810
Throw-in 18918
Foul 11674
Indirect FK 10521
Clearance 7896
Shot on target 5820
Shot off target 5256
Corner 4836
Substitution 2839
Kick-off 2566
Direct FK 2200
Offside 2098
Yellow Card (YC) 2047
Goal 1703
Penalty 173
Red Card (RC) 55
YC → RC 46

Table 11: Classes and number of
observations per class in the Soc-
cerNet Action Spotting dataset.

Event Nº observations

Pass 4985
Drive 4300
High pass 761
Header 713
Ball out of play 551
Throw-in 362
Cross 261
Ball player block 223
Shot 169
Player successful tackle 74
Free-kick 11
Goal 12

Table 12: Classes and number of
observations per class in the SoccerNet
Ball Action Spotting dataset.
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AP (δ = 1)
Event Nº observations 200MF 800MF

Uneven bars circles start 6612 42.95 43.83
Uneven bars circles end 6612 59.98 63.25
Balance beam leap jump hop start 4787 63.32 65.17
Balance beam leap jump hop end 4787 44.48 44.63
Balance beam flight salto start 4187 64.60 65.23
Balance beam flight salto end 4187 30.70 31.82
Uneven bars transition flight start 3389 81.14 84.80
Uneven bars transition flight end 3389 82.89 83.51
Floor exercise leap jump hop start 3238 80.29 80.79
Floor exercise leap jump hop end 3238 54.90 56.80
Floor exercise back salto start 2978 90.37 90.42
Floor exercise back salto end 2978 49.19 48.97
Balance beam flight handspring start 2893 58.85 59.77
Balance beam flight handspring end 2893 72.58 70.92
Vault (timestamp 0) 2031 11.83 11.00
Vault (timestamp 1) 2031 70.93 72.49
Vault (timestamp 2) 2031 90.70 90.29
Vault (timestamp 3) 2031 29.46 31.24
Uneven bars flight same bar start 1624 80.28 79.98
Uneven bars flight same bar end 1624 75.84 75.87
Balance beam turns start 1371 41.87 42.21
Balance beam turns end 1371 22.80 24.09
Floor exercise from salto start 1345 76.66 76.49
Floor exercise from salto end 1345 40.60 41.10
Uneven bars dismounts start 1227 89.24 89.92
Uneven bars dismounts end 1227 40.33 39.09
Balance beam dismounts start 1218 80.96 80.09
Balance beam dismounts end 1218 27.64 26.26
Floor exercise turns start 1103 42.46 39.31
Floor exercise turns end 1103 49.57 51.12
Floor exercise side salto start 49 34.32 38.10
Floor exercise side salto end 49 9.26 14.06

Table 13: Classes, number of observations per class, and per-class
Average Precision with a tolerance of δ = 1 frame in the FineGym
dataset.
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B Implementation details T-DEED

Here we outline the configuration used for each T-DEED model in the SOTA compar-
ison from Table 1 in the main paper. All models apply data augmentations, including
mixup with α = β = 0.2, color jitter with probability 0.25, and Gaussian blur with
probability 0.25. For FigureSkating and Tennis, frames of size 398× 224 are randomly
cropped to 224 × 224, while for FineDiving and FineGym, frames are resized to
224 × 224. In SN-AS and SN-BAS, frames are processed at the extracted resolution.
The detection radius rE is set to 4, 3, 2, 1, 1, and 0 for SN-BAS, SN-AS, FineDiving,
FigureSkating, Tennis, and FineGym, respectively. Additionally, we apply a weight of
w = 5 to the positive classes within the cross-entropy loss.

Among model-specific hyperparameters, we have the number of blocks (B), the
kernel size (ks), and the scalable factor within the SGP module (r). These are chosen
independently for all datasets:

• FS-Comps(T-DEED w/ 200MF): B = 3, ks = 5, r = 2.
• FS-Comp (T-DEED w/ 800MF): B = 2, ks = 9, r = 4.
• FS-Perf (T-DEED w/ 200MF): B = 3, ks = 9, r = 2.
• FS-Perf (T-DEED w/ 800MF): B = 2, ks = 9, r = 4.
• FineDiving (T-DEED w/ 200MF): B = 2, ks = 7, r = 4.
• FineDiving (T-DEED w/ 800MF): B = 2, ks = 9, r = 4.
• Tennis (T-DEED w/ 200MF): B = 3, ks = 11, r = 2.
• Tennis (T-DEED w/ 800MF): B = 3, ks = 11, r = 4.
• FineGym (T-DEED w/ 200MF): B = 3, ks = 11, r = 4.
• FineGym (T-DEED w/ 800MF): B = 3, ks = 9, r = 4.
• SN-AS (T-DEED w/ 200MF): B = 3, ks = 9, r = 4.
• SN-AS (T-DEED w/ 800MF): B = 3, ks = 11, r = 4.
• SN-BAS (T-DEED w/ 200MF): B = 2, ks = 9, r = 4.
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C Qualitative results

In this section, we present qualitative results on a randomly selected clip from the test
split of each dataset. We display both the ground-truth observations and T-DEED
predictions to support the detailed analysis in Section 4.8. For datasets with a large
number of classes, we omit classes that do not appear in the clip’s ground truth for
clarity in the visualizations.

Fig. 8: Qualitative results from a sample clip in the test split, illustrating ground-
truth annotations alongside predicted probabilities for each class at every temporal
position in the FS-Comp split.

Fig. 9: Qualitative results from a sample clip in the test split, illustrating ground-
truth annotations alongside predicted probabilities for each class at every temporal
position in the FS-Perf split.
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Fig. 10: Qualitative results from a sample clip in the test split, illustrating ground-
truth annotations alongside predicted probabilities for each class at every temporal
position in the FineDiving dataset.

Fig. 11: Qualitative results from a sample clip in the test split, illustrating ground-
truth annotations alongside predicted probabilities for each class at every temporal
position in the Tennis dataset. Refer to Table 10 for the meanings of class label abbre-
viations.
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Fig. 12: Qualitative results from a sample clip in the test split, illustrating ground-
truth annotations alongside predicted probabilities for each class at every temporal
position in the FineGym dataset. Predictions of classes not present in the ground-
truth were excluded for brevity.

Fig. 13: Qualitative results from a sample clip in the test split, illustrating ground-
truth annotations alongside predicted probabilities for each class at every temporal
position in the SoccerNet Action Spotting dataset. Predictions of classes not present
in the ground-truth were excluded for brevity.
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Fig. 14: Qualitative results from a sample clip in the test split, illustrating ground-
truth annotations alongside predicted probabilities for each class at every temporal
position in the SoccerNet Ball Action Spotting dataset. Predictions of classes not
present in the ground-truth were excluded for brevity.
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D Extended discriminability analysis

In this section, we present an additional analysis of discriminability to complement the
findings in the main paper. Figure 15 displays the cosine similarity analysis without
scaling the features. Notably, the patterns for both the Transformer and the GRU are
quite similar, as the output tokens from these layers are already within a comparable
range due to their inherent characteristics. In contrast, the pattern observed for the
SGP layer differs. This discrepancy arises from the pre-norm setting of the SGP layer,
which, despite containing normalization layers at the layer’s entrance, does not con-
strain the output tokens to a limited range of values. As a result, feature dimensions
vary widely in range, with some dimensions being substantially larger than others.
This variability influences the computed cosine similarity, which assesses the angle
between vectors; the dominant dimensions can overshadow those with lower ranges,
thus distorting the metric.

(a) FS-Comp discriminability analysis. (b) FineDiving discriminability analysis.

Fig. 15: Temporal module discriminability analysis. Cosine similarity after
backbone (BB), post-positional encoding (PE), and at each temporal layer is displayed.
Additionally, mAP performance with δ = 1 is reported.

To address this issue, we previously scale the tokens for each feature dimension by
dividing them by their respective maximum values across the validation data. This
operation brings all dimension in a consistent range without altering their distribution,
thereby allowing the detection of differences across all dimensions when computing
the cosine similarity.
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